Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ	
Проректор по уче	ебной работе
HIST	Н.В.Лобов

«<u>17</u>» февраля 20___г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Физико-химическая гидродинамика		
	(наименование)		
Форма обучения:	очная		
	(очная/очно-заочная/заочная)		
Уровень высшего образован	ия: магистратура		
	(бакалавриат/специалитет/магистратура)		
Общая трудоёмкость:	108 (3)		
	(часы (ЗЕ))		
Направление подготовки:	01.04.02 Прикладная математика и информатика		
_	(код и наименование направления)		
Направленность:	Хемобиодинамика и биоинформатика		
	(наиманоранна образоратані ной программі і)		

1. Общие положения

1.1. Цели и задачи дисциплины

Одной из важных научных проблем последнего времени является взаимное влияние друг на друга течений жидкости и химических реакций, протекающих в тоще жидкости или на межфазных границах. Эта проблема является междисциплинарной между механикой жидкости и химией и является предметом изучения физико-химической гидродинамики. Методы и подходы, разработанные в рамках данного направления, широко используются в специальных разделах механики жидкости и химических технологиях получения сложных веществ. Таким образом, выделение физико-химической гидродинамики в отдельный курс дает возможность обучающимся взглянуть с единой точки зрения на процессы, протекающие в потоках реагирующих растворов.

Целью учебной дисциплины является формирование основополагающих представлений о физико-химической гидродинамике; величинах, характеризующих течения жидких растворов, в которых протекают реакции различного типа; законах, которым эти величины подчиняются. Это включает в себя получение необходимого объема теоретических знаний о типичных неустойчивостях, возникающих в таких системах, условиях их возникновения, а также способах внешнего управления этими процессами; приобретение практических навыков решения задач физико-химической механики жидкости; знакомство с современными технологиями получения фармацевтических компонент в проточных микрореакторах. Содержание курса направлено также на формирование у студентов современного естественнонаучного мировоззрения, развитие научного мышления и расширение научно-технического кругозора.

Задачи учебной дисциплины:

- В результате изучения дисциплины обучающийся должен (проектируемые результаты освоения дисциплины):
- знать основные термины, классификации и законы физико-химической гидродинамики, влияние химических реакций на устойчивость жидкости, технологии управления реакциями в потоке;
- изучить методы и подходы физико-химической механики жидкости для объяснения явлений и процессов, происходящих в реагирующих растворах жидкостей и на межфазных границах вокруг них;
- овладеть практическими навыками использования математического аппарата физико-химической гидродинамики при решении задач, а также для количественного определения физико-химических параметров.

1.2. Изучаемые объекты дисциплины

Предметом освоения дисциплины являются: законы и уравнения физико-химической гидродинамики; условия возникновения и развития неустойчивостей жидких растворов при протекающих экзо- и эндотермических реакциях различных порядков; влияние поверхностно-активных веществ на течения жидкости, формирующихся вблизи межфазных поверхностей; использование законов физико-химической механики жидкости для управлениями процессами, протекающими в микрореакторах проточного типа.

1.3. Входные требования

Для освоения дисциплины «Физико-химическая гидродинамика» обучающиеся используют знания, умения и навыки, сформированные при изучении дисциплин следующих блоков учебной программы:

1. Введение в механику жидкости

Кроме того, дисциплина существенно опирается на такие дисциплины и разделы математики, как алгебра, анализ, тензорное исчисление, уравнения математической физики и др. При изучении данного курса используются различные разделы физики сплошных сред, теоретическая механика.

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.5	ид-1ПК-1.5	Знает концептуальные и теоретические основы физико-химической гидродинамики, основные величины, характеризующие процессы в потоках реагирующих растворов; основные законы поведения поверхностноактивных веществ в растворах с межфазной поверхностью.	Знает классические результаты и последние достижения в механике жидкости, физико-химической гидродинамике, геномики и биоинформатике;	Экзамен
ПК-1.5	ИД-2ПК-1.5	Умеет использовать методы и подходы физико-химической гидродинамики для объяснения наблюдаемых в эксперименте явлений, возникающих в реагирующих жидких средах.	Умеет обосновывать выбор и творчески применять современные методы математического моделирования объектов и процессов на стыке механики жидкости, химии, биологии и информатики;	Экзамен
ПК-1.5	ид-3ПК-1.5	Владеет методами математического анализа, используемых физико-химической гидродинамики, при решении практических задач и проведения количественных оценок протекающих физико-химических процессов	Владеет навыками разработки и анализа новых математических моделей сложных систем и процессов для междисциплинарных задач, сформулированных на стыке механики жидкости, химии, биологии и информатики.	Экзамен

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах	
Бид учесной рассты	часов	Номер семестра	
		2	
1. Проведение учебных занятий (включая проведе-	36	36	
ние текущего контроля успеваемости) в форме:			
1.1. Контактная аудиторная работа, из них:			
- лекции (Л)	16	16	
- лабораторные работы (ЛР)			
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	18	18	
- контроль самостоятельной работы (КСР)	2	2	
- контрольная работа			
1.2. Самостоятельная работа студентов (СРС)	36	36	
2. Промежуточная аттестация			
Экзамен	36	36	
Дифференцированный зачет			
Зачет			
Курсовой проект (КП)			
Курсовая работа (КР)			
Общая трудоемкость дисциплины	108	108	

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам ЛР		Объем внеаудиторных занятий по видам в часах СРС
2-й семес		711	115	CrC
Z-M CEMEC	1p			
Уравнения реакции-диффузии-конвекции	2	0	2	4
Общие уравнения гидродинамики, используемые в физико-химической механике жидкости. Реакции первого и второго порядка. Экзотермические и эндотермические реакции. Сложные законы диффузии растворов. Взаимное влияние гидродинамических течений и протекающих химических реакций. Положительная и отрицательная обратная связь между явлениями. Обзор методов исследования хемогидродинамических явлений.				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Динамика смешивающиеся реагирующих растворов	4	0	4	8
Классификация основных хемоконвективных неустойчивостей в случае смешивающихся растворов реагентов. Неустойчивость Рэлея-Бенара, Рэлея-Тейлора, двойной диффузии. Явление концентрационной зависимости процессов диффузии реагентов в растворах. Локальная хемоконвекция в карманах плотности в поле тяжести. Ударные волны плотности в поле тяжести. Технологии проектирования микрореакторов проточного типа и использования их для производства фармацевтических компонент.				
Динамика несмешивающихся реагирующих растворов	4	0	4	8
Классификация основных хемоконвективных неустойчивостей в случае несмешивающихся растворов реагентов. Влияние межфазной поверхности на динамику системы. Особенности формирования неустойчивости в несмешивающихся системах.				
Динамика ПАВ вблизи межфазных поверхностей	2	0	4	8
Механизм адсорбции и десорбции. Силы Ван-дер-Ваальса. Классификация кинетических свойств различных поверхностно-активных веществ. Точка мицеллообразования. Диффузионная кинетика. Барьерная кинетика. Уравнение Ленгмюра. Изотермы Гиббса, Генри, Ленгмюра, Френкеля, Ван-дер-Ваальса.				
Влияние ПАВ на течения жидкости	4	0	4	8
Термокапиллярный и солюто-капиллярный механизмы развития неустойчивости жидкости. Взаимодействие капиллярных видов неустойчивости и гравитационных конвективных неустойчивостей жидкости.				
ИТОГО по 2-му семестру	16	0	18	36
ИТОГО по дисциплине	16	0	18	36

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Процедура усреднения уравнений реакции-диффузии-конвекции
2	Точное решение для хемоконвективного течения жидкости
3	Решение задачи устойчивости плоского слоя реагирующей жидкости

№ п.п.	Наименование темы практического (семинарского) занятия
4	Решение задачи устойчивости двухслойной системы реагирующих жидкостей для реакции первого порядка, часть 1.
5	Решение задачи устойчивости двухслойной системы реагирующих жидкостей для реакции первого порядка, часть 2
6	Точные решение уравнения Ленгмюра, часть 1
7	Точные решение уравнения Ленгмюра, часть 2
8	Точное решение для задачи Пирсона, часть 1
9	Точное решение для задачи Пирсона, часть 2

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на актив-ном методе обучения, при которой учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопроса преподавателя нацелены на активизацию процессов усвоения материала. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установления связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и творческих методов для решения проблем; отработка у обучающихся навыков взаимодействия в составе коллектива; закрепление основ теоретических знаний.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	Библиографическое описание	Количество
№ п/п	(автор, заглавие, вид издания, место, издательство,	экземпляров в
	год издания, количество страниц)	библиотеке
1. Основная литература		

1	Касаткин А. Г. Основные процессы и аппараты химической технологии: учебник для вузов / А. Г. Касаткин Москва: Альянс,	49
	2014.	
2	Колесниченко И. В. Введение в механику несжимаемой жидкости: учебное пособие / И. В. Колесниченко, А. Н. Шарифулин Пермь: Изд-во ПНИПУ, 2019.	5
3	Ролдугин В. И. Физикохимия поверхности: учебник-монография / В. И. Ролдугин Долгопрудный: Интеллект, 2011.	4
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Гершуни Г. З. Конвективная устойчивость несжимаемой жидкости / Г. З. Гершуни, Е. М. Жуховицкий Москва: Наука, 1972.	2
2	Полак Л. С. Самоорганизация в неравновесных физико-химических системах / Л. С. Полак, А. С. Михайлов Москва: Наука, 1983.	2
3	Синайский Э.Г. Гидродинамика физико-химических процессов / Э.Г.Синайский М.: Недра, 1997.	1
4	Стромберг А. Г. Физическая химия: учебник для вузов / А. Г. Стромберг, Д. П. Семченко Москва: Высш. шк., 2006.	84
5	Ягодовский В. Д. Адсорбция: учебное пособие / В. Д. Ягодовский Москва: БИНОМ. Лаб. знаний, 2015.	3
	2.2. Периодические издания	
1	Вычислительная механика сплошных сред: журнал / Российская академия наук, Уральское отделение; Институт механики сплошных сред Пермь: ИМСС УрО РАН, 2008	
2	Известия Российской академии наук. Механика жидкости и газа: научный журнал / Российская академия наук Москва: Наука, 1966	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	НЫ
	Не используется	
	4. Учебно-методическое обеспечение самостоятельной работы сту,	дента
	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
r '		http://eqworld.ipmnet.ru/ru/li	
литература	динамику жидкости. М.: Мир, 1973	brary/mechanics/fluid.htm	свободный доступ
Дополнительная		http://eqworld.ipmnet.ru/ru/li	сеть Интернет;
литература	гидродинамика (2-е издание). М.: Физматлит, 1959	brary/mechanics/fluid.htm	свободный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
1 *	Windows 10 (подп. Azure Dev Tools for Teaching)
1 1	Microsoft Office Professional 2007. лиц. 42661567

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
База данных Scopus	https://www.scopus.com/
База данных Springer Nature e-books	http:/link.springer.com/ http://jwww.springerprotocols.com/ http://materials.springer.com/ http://zbmath.org/ http://npg.com/
База данных Web of Science	http://www.webofscience.com/
База данных научной электронной библиотеки (eLIBRARY.RU)	https://elibrary.ru/
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Лекция	Лекционная аудитория, оборудованная электронным	1
	проектором и экраном	
Практическое	Персональные компьютеры (локальная компьютерная	4
занятие	сеть)	

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
Описан в отдельном документе	